Effect of Conservation Agriculture on Productivity and Energetic of Maize-wheat Cropping System

Sima Kumari, Sheela Barla, R.R. Upasani, B.K. Agarwal, and Rajnish Anand

Birsa Agricultural University, Ranchi, Jharkhand 834006

Abstract—A field experiment was conducted at Birsa Agricultural University, Ranchi, Jharkhand during 2015-16 and 2016-17 in sandy soil to study the effect of conservation agriculture on productivity and energetic of maize – wheat cropping system. The treatments comprised of five tillage sequences viz. conventional-conventional(CT - CT), conventional – zero (CT - ZT), zero – zero (ZT - ZT), zero – zero with crop residue (ZT - ZT + R) and zero tillage along with crop residues in both the seasons (ZT+R-ZT+R) in main plots, while three weed control methods viz, recommended herbicides in maize (atrazine @ 1 kg/ha pre-emergence) and wheat (isoproturon @ 0.75 kg/ha +2,4-D @ 0.5 kg/ha post emergence), *IWM in maize (pendimethaline @1 kg/ha + intercrop black gram)* and in wheat (isoproturon @ 0.75 kg/ha +2,4-D @ 0.5 kg/ha post emergence + mechanical weeding at 40 DAS) and weedy check respectively in sub plots. The experiment was laid out in strip plot design with three replications. The result revealed that CT - CT sequence recorded 63.11,65.21 and 72.85, 74.64 percent significantly higher gross energy output and net energy output of maize-wheat system compared to minimum observed under ZT – ZT sequence i.e. 174803, 185956 and 146076, 157228 MJ/ha during both the years respectively while integrated weed management recorded higher gross energy output, net energy output and energy use efficiency of maize-wheat system compare to recommended herbicides and weedy check during both the years.

Keywords: Energy, Maize-wheat cropping system, conservation agriculture, weed management.

1. INTRODUCTION

Maize-wheat is ranked first among different maize based cropping systems in India. Conventional crop production system results in higher cost of production and energy consumption. Yield of different crops can be increased up to 30 % by using optimal level of energy input (Chaudhary *et al.*, 2006). In present methods of crop production, major portion of energy (25-30 %) is utilized for field preparation and crop establishment which can be minimized by reducing the tillage operations. Zero tillage technique is an ecological approach for soil surface management and seed bed preparation resulting in less energy requirement, better crop residue management (Jain *et al.*, 2007). Continuous tillage in both i.e. *kharif* and *rabi* is found to have detrimental effect in soil structure and health and energy requirement is quite high (Gupta *et al.*, 2007). Thus, the present work was undertaken to

determine effect of conservation agriculture on productivity and energetic of maize-wheat cropping system.

2. MATERIALS AND METHODS

A field experiment was conducted at Birsa Agricultural University, Ranchi, Jharkhand during 2015-16 and 2016-17 in sandy soil to study the effect of conservation agriculture on productivity and energetic of maize - wheat cropping system. The treatments comprised of five tillage sequences viz. conventional-conventional(CT - CT), conventional - zero (CT - ZT), zero - zero (ZT - ZT), zero - zero with crop residue (ZT - ZT+R) and zero tillage along with crop residues in both the seasons (ZT+R - ZT+R) in main plots, while three weed control methods viz, recommended herbicides in maize (atrazine @ 1 kg/ha pre-emergence) and wheat (isoproturon @ 0.75 kg/ha +2,4-D @ 0.5 kg/ha post emergence), IWM in maize (pendimethaline @1 kg/ha + intercrop black gram) and in wheat (isoproturon @ 0.75 kg/ha +2,4-D @ 0.5 kg/ha post emergence + mechanical weeding at 40 DAS) and weedy check respectively in sub plots. The experiment was laid out in strip plot design with three replications. Experimental soil was sandy-loam in texture having pH 5.5, organic carbon 4.2 g/kg soil, available N 240 kg/ha, available P 19.00 kg/ha and available K 187 kg/ha. The variety of maize (composetive swan) and wheat ('K-9107') respectively. For calculating the energy input and output from different power sources, viz. labour, fuel, machinery, fertilizer, seeds, pesticides, irrigation and crop yield standard energy coefficients were used as suggested by Devsenapati et al., (2008). Net energy production was calculated by subtracting the energy input from the output.

3. RESULTS AND DISCUSSION

Maize: Data on gross energy output, net energy output and energy use efficiency by maize as influenced by tillage sequences and weed control methods during 2015 and 2016(Table 1). Tillage significantly affected gross energy output, net energy output and energy use efficiency by maize during both the years. CT – CT sequence being similar to ZT+R – ZT+R recorded 87.25 and 94.31; 125.04 and 133.37 and 105.56 and 98.96 percent significantly higher gross energy output, net energy output and energy use efficiency compared to minimum observed under ZT - ZT sequence i.e. 28704 and 29959 MJ/ha; 18465 and 19719 MJ/ha and 1.80 and 1.93 during both the years respectively. ZT+R - ZT+Rsequence recorded 46.36 percent significantly reduced specific energy compared to maximum observed under ZT - ZTsequence i.e. 5884MJ/t during 2016. Different tillage sequences did not influence specific energy during 2015.

Table 1: Energetic of maize production as influenced by
tillage and weed control methods

	Ene	Gross							
	rgy	energy		Net Energy				Spe	ecific
Treat	inp	output(MJ		outputs		Ener	gy use	energy	
ment	uts	/ha)		(MJ/ha)		efficiency		(MJ/t)	
Tillag	(MJ								
e	/ha)								
metho		201		201		201		201	
d		5	2016	5	2016	5	2016	5	2016
CT-	121	537	5821	415	4601			386	
CT	93	47	2	54	9	3.41	3.77	7	3211
CT-	121	464	4776	342	3556			547	
ZT	93	47	1	54	8	2.81	2.92	9	3974
ZT-	102	287	2995	184	1971			529	
ZT	40	04	9	65	9	1.80	1.93	1	5884
ZT-	102	337	3432	235	2408			449	
ZT+R	40	71	0	31	0	2.30	2.35	0	4536
ZT+R									
-	106	502	5289	395	4220			391	
ZT+R	88	69	4	81	6	3.70	3.84	3	3156
S		200		200					
Em±	-	7	1649	7	1649	0.18	0.14	495	152
CD(P		654		654				161	
=0.05)	-	5	5378	5	5378	0.58	0.47	5	496
Weed									
contro									
1									
W1(R	111	434	4372	323	3262			394	
H)	01	24	7	23	6	2.91	2.94	2	3866
W2(I	120	588	5933	467	4726			338	
WM)	71	45	5	74	5	3.88	3.92	4	3152
W3(W	101	254	3082	153	2066			649	
C)	60	94	5	34	5	1.51	2.03	9	5439
S		150		150					
Em±		9	1151	9	1151	0.13	0.10	397	86
CD(P		592		592				155	
=0.05)		2	4517	2	4517	0.53	0.39	8	337

Weed control methods influenced gross energy output by maize significantly during both the years. Integrated weed management recorded higher gross energy output, net energy output and energy use efficiency compare to recommended herbicides and weedy check to the tune of 35.51 and 35.69; 44.71 and 44.87; and 25.13 and 25.64 percent 130.83 and 92.49; 205.03 and 128.72 and 90.91 and 64.43 percent during 2015 and 2016 respectively. IWM recorded reduced specific

energy compare to weedy check to the tune of 47.93 and 42.05 percent during 2015 and 2016 respectively.

Wheat: Tillage significantly affected gross energy output, net energy output, energy use efficiency and specific energy of wheat during both the years (Table 2). CT - CT sequence being similar to ZT+R – ZT+R and CT – ZT recorded 35.07 and 33.51; 58.89 and 50.20 and 50.86 and 37.77 percent significantly higher gross energy output, net energy output and energy use efficiency respectively compared to minimum observed under ZT - ZT sequence i.e. 41684 and 43898 MJ/ha ; 22570 and 25410 MJ/ha and 1.16 and 1.35 during both the years respectively. CT- ZT tillage sequence was similar to CT-CT and ZT+R -ZT+R during 2015-16 and ZT+R -ZT+R tillage sequence was similar to CT-ZT during 2016-17. The reduction was 24.03 and 21.83 percent compared to maximum specific energy required to produce wheat under ZT-ZT+R tillage sequence i.e. 8110 and 7383 MJ/t during 2015-16 and 2016-17 respectively.

 Table 2: Energetic of wheat production as influenced by tillage and weed control methods

	Ene	Gross							
	rgy	energy		Net Energy				Spe	ecific
Treat	inp	output(MJ		outputs		Energy use		energy	
ment	uts	/ha)		(MJ/ha)		efficiency		(MJ/t)	
Tillag	(MJ								
e	/ha)								
metho		201	2016	201	2016-	201	2016-	201	2016-
d		5-16	-17	5-16	17	5-16	17	5-16	17
CT-	204	563	5860	358	3816			620	
CT	40	02	7	61	7	1.75	1.86	9	6328
CT-	184	513	5104	328	3255			616	
ZT	87	03	5	16	8	1.77	1.76	1	6151
ZT-	184	416	4389	231	2541			746	
ZT	87	84	8	97	0	1.25	1.37	3	7106
ZT-	193	419	4551	225	2616			811	
ZT+R	45	15	2	70	6	1.16	1.35	0	7383
ZT+R									
-	193	515	5408	321	3474			649	
ZT+R	45	43	8	98	3	1.66	1.80	4	5771
S		198		198					
Em±		5	986	5	986	0.10	0.05	324	141
CD(P		647		647				105	
=0.05)		3	3217	3	3217	0.33	0.17	7	461
Weed									
contro									
1									
W1(R	193	490	4858	297	2928			674	
H)	01	03	3	02	1	1.54	1.52	1	6659
W2(I	193	561	6175	368	4241			584	
WM)	33	41	2	09	9	1.90	2.18	2	5319
W3(W	190	405	4155	214	2252			808	
C)	30	04	5	74	6	1.13	1.18	0	7665
S		130		130					
Em±		8	1654	8	1654	0.07	0.09	249	272
CD(P		513		513					
=0.05)		2	6492	2	6492	0.27	0.34	977	1066

Sequential weed control methods influenced gross energy output, net energy output, energy use efficiency and specific energy by wheat significantly during both the years. Integrated weed management recorded higher gross energy output, net energy output and energy use efficiency compare to recommended herbicides and weedy check to the tune of 14.57, 27.11; 23.93, 44.87 and 23.38, 43.42 and 38.61, 48.60 ; 71.41, 88.31 and 68.14, 84.75 percent during 2015-16, 2016-17. IWM recorded reduced specific energy compare to RH and weedy check to the tune of 13.34, 27.70 and 30.61, 16.70 percent during 2015-16, 2016-17 and pooled data respectively.

Maize-wheat system: Tillage significantly affected gross energy output, net energy output, energy use efficiency and specific energy of maize-wheat system during both the years (Table 3). CT – CT sequence recorded 63.11,65.21 and 72.85, 74.64 percent significantly higher gross energy output and net energy output of maize-wheat system compared to minimum observed under ZT - ZT sequence i.e. 174803, 185956 and 146076, 157228 MJ/ha during both the years respectively. Jha et al (2011) and Ramesh et al (2014) also have reported significantly higher gross energy output under CT - CT tillage. ZT+R – ZT+R sequence being similar to CT – CT and CT – ZT during 2015-16 and also similar to CT – CT during 2016-17 recorded 52.27 and 62.22 percent significantly higher energy use efficiency of maize-wheat system compared to minimum observed under ZT – ZT sequence i.e. 5.07 and 5.43 during both the years respectively. CT - CT sequence being similar to ZT +R- ZT+R recorded 29.90 percent significantly reduced specific energy compared to maximum observed under ZT - ZT sequence i.e. 5987 MJ/t during 2015-16. ZT -ZT+R sequence being similar to CT - CT recorded 45.77 percent significantly reduced specific energy compared to maximum observed under ZT - ZT sequence i.e. 5917 MJ/t during 2016-17.

Table 3: Energetic of maize – wheat cropping system as influenced by tillage and weed control methods

Treat ment	Ene rgy inp uts	Gross energy output(MJ /ha)		Net Energy outputs (MJ/ha)		Energy use efficiency		Specific energy (MJ/t)	
Tillag e metho d	(MJ /ha)	201 5-16	2016 -17	201 5-16	2016- 17	201 5-16	2016- 17	201 5-16	2016- 17
CT- CT	326 33	285 123	3072 12	252 490	2745 79	7.68	8.37	460 9	4309
CT- ZT	306 80	253 278	2609 63	222 598	2302 83	7.20	7.46	500 2	4689
ZT- ZT	287 27	174 803	1859 56	146 076	1572 28	5.07	5.43	598 7	5917
ZT- ZT+R	295 85	192 898	2049 93	163 313	1754 08	5.50	5.90	584 7	5602
ZT+R - ZT+R	300 34	264 147	2930 30	234 113	2629 96	7.72	8.70	473 5	4059

S		759		759					
Em±		7	7102	7	7102	0.25	0.23	225	123
CD(P		247	2315	247	2315				
=0.05)		72	8	72	8	0.82	0.74	734	401
Weed									
contro									
1									
W1(R	304	237	2437	206	2133			493	
H)	02	295	76	893	74	6.76	6.99	2	4868
W2(I	314	297	3158	265	2844			419	
WM)	03	169	31	766	27	8.40	9.00	2	3875
W3(W	291	167	1916	138	1624			658	
C)	90	685	85	495	95	4.74	5.52	6	6004
S		342		342					
Em±		3	4722	3	4722	0.12	0.15	179	131
CD(P		134	1853	134	1853				
=0.05)		36	7	36	7	0.46	0.60	701	513

Weed control methods influenced gross energy output, net energy output, energy use efficiency and specific energy by wheat significantly during both the years. Integrated weed management recorded higher gross energy output, net energy output and energy use efficiency of maize-wheat system compare to recommended herbicides and weedy check to the tune of 25.23, 29.56, 28.46, 33.30 and 24.26, 28.76 and 77.22, 64.77, 91.90, 75.04 and 77.22, 63.04 percent during 2015-16, 2016-17 respectively . IWM recorded reduced specific energy compare to RH and weedy check to the tune of 17.65, 23.34 and 57.11, 54.94 percent during 2015-16, 2016-17.

REFERENCES

- Chaudhary, V.P., Gangwar, B. and Pandey, D.K. 2006. Auditing of energy use and output of different cropping system in India. *Agricultural Engineering International: CIGR Journal* 8: 652-658.
- [2] Devsenapati, P., Kumar, S.G. and Gill, M.S. 2008. Energy in crop production. *AICRP on Cropping System*, Tamil Nadu Agriculture University.
- [3] Gupta, M., Bali, A.S., Sharma, S. and Dixit, A.K. 2007. Potential role and influence of zero tillage technology on energy saving in rice-wheat system. *Indian Journal of Agricultural Sciences* 77(10): 657-659.
- [4] Jain, N., Jain, V., Mishra, J.S. and Kewat, M.L. 2007. Effect of tillage packages and herbicides on energy and economics of wheat in transplanted rice-heat system. *Indian Journal of Agricultural Sciences* 77(3): 174-76.
- [5] Jha, A.K., Kewat, M.L., Upadhyay, V.B. and Vishwakarma, S.K. 2011. Effect of tillage and sowing methods on productivity, economics and energetic of rice-wheat cropping system. *Indian Journal of Agronomy* 56(1): 35-40.
- [6] Ramesh, S.S. Rana, S.C.Negi, Kumar, S. and Subehia, S.K. 2014. Effect of resource-conservation and planting techniques on productivity of maize-wheat cropping system. *Indian Journal* of Agronomy **59** (1): 34-40.